3.47 \(\int \cos (c+d x) (a \cos (c+d x)+b \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=67 \[ -\frac {a^2 \sin ^3(c+d x)}{3 d}+\frac {a^2 \sin (c+d x)}{d}-\frac {2 a b \cos ^3(c+d x)}{3 d}+\frac {b^2 \sin ^3(c+d x)}{3 d} \]

[Out]

-2/3*a*b*cos(d*x+c)^3/d+a^2*sin(d*x+c)/d-1/3*a^2*sin(d*x+c)^3/d+1/3*b^2*sin(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {3090, 2633, 2565, 30, 2564} \[ -\frac {a^2 \sin ^3(c+d x)}{3 d}+\frac {a^2 \sin (c+d x)}{d}-\frac {2 a b \cos ^3(c+d x)}{3 d}+\frac {b^2 \sin ^3(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a*Cos[c + d*x] + b*Sin[c + d*x])^2,x]

[Out]

(-2*a*b*Cos[c + d*x]^3)/(3*d) + (a^2*Sin[c + d*x])/d - (a^2*Sin[c + d*x]^3)/(3*d) + (b^2*Sin[c + d*x]^3)/(3*d)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2633

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 3090

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Int[ExpandTrig[cos[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] &&
 IntegerQ[m] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \cos (c+d x) (a \cos (c+d x)+b \sin (c+d x))^2 \, dx &=\int \left (a^2 \cos ^3(c+d x)+2 a b \cos ^2(c+d x) \sin (c+d x)+b^2 \cos (c+d x) \sin ^2(c+d x)\right ) \, dx\\ &=a^2 \int \cos ^3(c+d x) \, dx+(2 a b) \int \cos ^2(c+d x) \sin (c+d x) \, dx+b^2 \int \cos (c+d x) \sin ^2(c+d x) \, dx\\ &=-\frac {a^2 \operatorname {Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (c+d x)\right )}{d}-\frac {(2 a b) \operatorname {Subst}\left (\int x^2 \, dx,x,\cos (c+d x)\right )}{d}+\frac {b^2 \operatorname {Subst}\left (\int x^2 \, dx,x,\sin (c+d x)\right )}{d}\\ &=-\frac {2 a b \cos ^3(c+d x)}{3 d}+\frac {a^2 \sin (c+d x)}{d}-\frac {a^2 \sin ^3(c+d x)}{3 d}+\frac {b^2 \sin ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.39, size = 64, normalized size = 0.96 \[ \frac {\sin (c+d x) \left (\left (a^2-b^2\right ) \cos (2 (c+d x))+5 a^2+b^2\right )-3 a b \cos (c+d x)-a b \cos (3 (c+d x))}{6 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a*Cos[c + d*x] + b*Sin[c + d*x])^2,x]

[Out]

(-3*a*b*Cos[c + d*x] - a*b*Cos[3*(c + d*x)] + (5*a^2 + b^2 + (a^2 - b^2)*Cos[2*(c + d*x)])*Sin[c + d*x])/(6*d)

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 53, normalized size = 0.79 \[ -\frac {2 \, a b \cos \left (d x + c\right )^{3} - {\left ({\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, a^{2} + b^{2}\right )} \sin \left (d x + c\right )}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a*cos(d*x+c)+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/3*(2*a*b*cos(d*x + c)^3 - ((a^2 - b^2)*cos(d*x + c)^2 + 2*a^2 + b^2)*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.25, size = 73, normalized size = 1.09 \[ -\frac {a b \cos \left (3 \, d x + 3 \, c\right )}{6 \, d} - \frac {a b \cos \left (d x + c\right )}{2 \, d} + \frac {{\left (a^{2} - b^{2}\right )} \sin \left (3 \, d x + 3 \, c\right )}{12 \, d} + \frac {{\left (3 \, a^{2} + b^{2}\right )} \sin \left (d x + c\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a*cos(d*x+c)+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-1/6*a*b*cos(3*d*x + 3*c)/d - 1/2*a*b*cos(d*x + c)/d + 1/12*(a^2 - b^2)*sin(3*d*x + 3*c)/d + 1/4*(3*a^2 + b^2)
*sin(d*x + c)/d

________________________________________________________________________________________

maple [A]  time = 1.43, size = 52, normalized size = 0.78 \[ \frac {\frac {b^{2} \left (\sin ^{3}\left (d x +c \right )\right )}{3}-\frac {2 \left (\cos ^{3}\left (d x +c \right )\right ) a b}{3}+\frac {a^{2} \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a*cos(d*x+c)+b*sin(d*x+c))^2,x)

[Out]

1/d*(1/3*b^2*sin(d*x+c)^3-2/3*cos(d*x+c)^3*a*b+1/3*a^2*(2+cos(d*x+c)^2)*sin(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 52, normalized size = 0.78 \[ -\frac {2 \, a b \cos \left (d x + c\right )^{3} - b^{2} \sin \left (d x + c\right )^{3} + {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} a^{2}}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a*cos(d*x+c)+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/3*(2*a*b*cos(d*x + c)^3 - b^2*sin(d*x + c)^3 + (sin(d*x + c)^3 - 3*sin(d*x + c))*a^2)/d

________________________________________________________________________________________

mupad [B]  time = 0.51, size = 77, normalized size = 1.15 \[ \frac {2\,\left (\frac {\sin \left (c+d\,x\right )\,a^2\,{\cos \left (c+d\,x\right )}^2}{2}+\sin \left (c+d\,x\right )\,a^2-a\,b\,{\cos \left (c+d\,x\right )}^3-\frac {\sin \left (c+d\,x\right )\,b^2\,{\cos \left (c+d\,x\right )}^2}{2}+\frac {\sin \left (c+d\,x\right )\,b^2}{2}\right )}{3\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(a*cos(c + d*x) + b*sin(c + d*x))^2,x)

[Out]

(2*(a^2*sin(c + d*x) + (b^2*sin(c + d*x))/2 + (a^2*cos(c + d*x)^2*sin(c + d*x))/2 - (b^2*cos(c + d*x)^2*sin(c
+ d*x))/2 - a*b*cos(c + d*x)^3))/(3*d)

________________________________________________________________________________________

sympy [A]  time = 0.48, size = 85, normalized size = 1.27 \[ \begin {cases} \frac {2 a^{2} \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {a^{2} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} - \frac {2 a b \cos ^{3}{\left (c + d x \right )}}{3 d} + \frac {b^{2} \sin ^{3}{\left (c + d x \right )}}{3 d} & \text {for}\: d \neq 0 \\x \left (a \cos {\relax (c )} + b \sin {\relax (c )}\right )^{2} \cos {\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a*cos(d*x+c)+b*sin(d*x+c))**2,x)

[Out]

Piecewise((2*a**2*sin(c + d*x)**3/(3*d) + a**2*sin(c + d*x)*cos(c + d*x)**2/d - 2*a*b*cos(c + d*x)**3/(3*d) +
b**2*sin(c + d*x)**3/(3*d), Ne(d, 0)), (x*(a*cos(c) + b*sin(c))**2*cos(c), True))

________________________________________________________________________________________